Kleene fixed-point theorem
In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following:
- Let L be a complete partial order, and let f : L → L be a continuous (and therefore monotone) function. Then the least fixed point of f is the supremum of the ascending Kleene chain of f.
It is often attributed to Alfred Tarski, but the original statement of Tarski's fixed point theorem is about monotone functions on complete lattices.
The ascending Kleene chain of f is the chain
obtained by iterating f on the least element ⊥ of L. Expressed in a formula, the theorem states that
where denotes the least fixed point.
See also
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›